91九色Porny国产探花,亚洲AV无码成人精品区丝袜,日韩中文字幕综合不卡,久久九九少妇免费看A片

產(chǎn)品詳情
  • 產(chǎn)品名稱:PFO (F8)

  • 產(chǎn)品型號(hào):PFO (F8)
  • 產(chǎn)品廠商:Ossila
  • 產(chǎn)品價(jià)格:0
  • 折扣價(jià)格:0
  • 產(chǎn)品文檔:
你添加了1件商品 查看購(gòu)物車
簡(jiǎn)單介紹:
For a high-efficiency green OLED we recommend blending F8 with F8BT with the below specifications. This ink can then be applied either in air, or in a glovebox, with little difference in performance (provided exposure time and light levels are minimised). For more details see our fabrication guide.
詳情介紹:

General Information

Full name Poly(9,9-di-n-octylfluorenyl-2,7-diyl)
Synonyms
  • F8
  • PFO
Chemical formula (C29H41)n
CAS number 19456-48-5
Recommended solvents Toluene, xylene, chlorobenzene
Classification / Family Polyfluorenes, Benzothiodiazoles, Organic semiconducting materials, Semiconducting polymers, OLED green emitter materials, OLED materials, Organic photovoltaic (OPV) materials, Polymer solar cells, OFET materials

Batch Details

Batch number MW MN PDI
M161 114,050 37,910 3.00
M162 85,983 31,040 2.77

 

F8, PFO chemical structure
Chemical structure of PFO (F8). CAS No.: 19456-48-5. Chemical formula: (C29H41)n.

 

Characterisation

F8 PFO molecular weight (Mw) distribution plot (GPC)
F8 distribution plot.

 

Applications

For a high-efficiency green OLED we recommend blending F8 with F8BT with the below specifications. This ink can then be applied either in air, or in a glovebox, with little difference in performance (provided exposure time and light levels are minimised). For more details see our fabrication guide.

At typical concentrations of 10 mg/ml, 100 mg of F8 (PFO) will make around 200 devices on Ossila's standard ITO substrates (20 x 15 mm), assuming 50% solution usage (50% loss in filtering and preparation).

OLED reference device:
  • F8 with F8BT
  • Blend ratio of 19:1 (F8:F8BT) in Toluene
  • Total concentration of 10 mg/ml
  • 0.45 μm PTFE filter (hydrophobic)
  • Spun at 2000 rpm (approx. 70 nm thickness)

Pipetting 20 μl of the above solutions onto a substrate spinning at 2000 rpm should provide a good even coverage, with approximately 70 nm thickness. The substrate needs to be spun until dry, which is typically only a few seconds — 15 seconds should be ample to achieve this. Thermal annealing should be undertaken at 80°C for 10 minutes prior to cathode deposition.

 

Typical device architectures and performance

A basic, efficient OLED can be made using PEDOT:PSS as a hole-transport layer and Calcium/Aluminium as the electron contact. When used with the Ossila ITO glass OLED substrates and shadow masks this produces an easy to fabricate yet efficient >100 cd/m2) device.

Poly-fluorene based OLED architecture based on F8 blended with F8BT
在線客服